Project Profile:
Abondance Montréal: le Soleil—Montréal, Quebec

This Project Profile highlights Abondance Montréal: le Soleil, one of the winning entries in the Canada Mortgage and Housing Corporation (CMHC) EQuilibrium™ Sustainable Housing Demonstration Initiative - a national initiative to design, build and demonstrate sustainable homes throughout Canada¹.

Key Features

- Urban infill project in an established metropolitan area close to amenities;
- Net-zero energy consumption target;
- Energy is conserved through advanced building envelope construction and air tightness, a geothermal heating system and energy-efficient appliances and lighting;
- Energy is produced using a solar photovoltaic array and solar hot water panels;
- Energy is recovered in a greywater heat recovery system and heat recovery ventilators;
- Rainwater is harvested from the roof for use in toilets.

Project Description

Abondance Montréal: le Soleil is a three story triplex condominium situated in Montréal's southwest borough of Verdun. It is a multi-family community revitalization project on the site of a former parking lot and car wash.

In keeping with the EQuilibrium™ Housing initiative, the developer, EcoCité Developments, in partnership with the builder Les Constructions Sodero Inc., designed and built this condominium project with the intent that it is healthy.

¹ For more information on this initiative and the various EQuilibrium™ Housing projects, visit the CMHC website (www.cmhc.ca) and type the search keyword “EQuilibrium”.

Figure 1—Abondance Montréal: le Soleil
and comfortable to live in, produces as much energy as it requires in a year, reduces energy use to a minimum, conserves resources, has low environmental impact, and is marketable to people interested in investing in sustainable homes.

Each of the three 79.3 m² (854 sq. ft.) apartments² is located on a separate level of the building. They share a rooftop terrace and rear courtyard and parking area. The basement contains the mechanical and storage rooms.

Each apartment is based on an open-plan design and contains a living room, dining room and kitchen, a four piece bathroom, and a flexible space that can be used as two bedrooms, a bedroom and den or office, or one large bedroom. Le Soleil’s annual energy requirements are predicted to be slightly more than the on-site production from renewable energy sources, which include passive and active solar heating systems and a solar photovoltaic (PV) electricity generating system. The apartments’ energy requirements, on a per m² (sq. ft.) heated floor area basis, are predicted to be only 39% of the requirements for the average Canadian home.

² These figures represent the heated space area of the apartment. The total area of each suite, including exterior walls, is 94.4 m² (1016 sq. ft.). These figures do not include other areas such as the stairwell adjacent to, or the basement storage assigned to, the apartment.
Le Soleil has a net-metering agreement with Hydro Quebec, whereby surplus electrical production fed into the utility grid will be credited against electricity supplied by the grid to the building.

During the first year of occupancy, the energy generation, energy and water consumption, and indoor air quality for the building will be monitored to assess performance.

Occupant Health and Comfort

Establishing and maintaining indoor air quality is an important goal for EQuilibrium™ homes. Materials selected for the le Soleil apartments help minimize indoor air pollutants, such as volatile organic compounds (VOCs) and other noxious chemicals. Urea-formaldehyde free plywood, oriented strand board (OSB) and cabinet materials were used throughout. Low and no VOC paints and flooring sealers were applied.

The airtight building envelope effectively minimizes uncontrolled air leakage, which enhances the durability and energy efficiency of the project. As the building is very airtight, heat recovery ventilators (HRVs) are installed in each apartment to ensure energy efficient indoor-outdoor air exchange. The HRVs also help control moisture and odours by exhausting air from the kitchens and bathrooms while delivering fresh air to the other rooms in the apartments. In the winter, the HRVs transfer heat from the outgoing exhaust air to warm the incoming fresh air. In the summer, the HRVs can cool the incoming warmer outdoor. This helps to ensure that the fresh air is delivered at a temperature that is comfortable. The HRVs also contain filters that can reduce the amount of airborne particulates that enter the apartments. A humidifier is provided in each unit to help maintain desired humidity levels in the winter.

The design, size and placement of the triple glazed aluminum windows ensure that the homes are well daylit, with maximal penetration of natural light into the main living areas, thereby reducing the need for artificial lighting. Blinds or curtains on the lower portion of the windows ensure that the levels of early morning and late afternoon sunlight in the homes can be easily controlled, which slightly reduces the space cooling requirements.

The highly insulated and well sealed windows and doors help to eliminate cold zones, drafts, and the penetration of street noise. The bedrooms are placed at the back of the building, away from the street and overlooking the rear courtyard. This further helps reduce street noise in the sleeping area. Noise transfer between the units is reduced using a floor assembly of materials resistant to sound transfer, including recycled wood fibre subfloor panels. Independent on-site testing of noise transfer reduction through the floors yielded an FIIC (field impact insulation class) of 59, which is very good.

Energy Efficiency

As an urban infill project, le Soleil’s physical orientation and exterior façade were predetermined by the site and local architectural heritage. Given the site constraints that limited passive solar gain, an extremely well-insulated and air-tight building envelope, maximization of energy recovery, and reduced electrical consumption was required to meet the net zero energy target.

The building envelope is insulated with a spray applied polyurethane foam insulation which is composed of a soybean oil and 40% recycled plastic. This material also acts as the air and vapour barrier. The foam was applied to both the inside and outside of the building, providing insulation values in excess of R-40 in the walls and R-70 in the roof. By paying particular attention to the window installation and the sealing of other envelope penetrations, an excellent airtightness of 0.4 air-changes per hour at 50 Pa was achieved during the blower door test.

Heating and cooling is provided to each apartment by its own dedicated forced air ground source heat pump (GSHP) system. In the cooler months
the GSHPs collect heat from deep in the ground to heat the apartments; in
the warm summer months the GSHPs return excess heat to the ground to cool
the apartments.

The GSHPs employ two-speed
compressors that can operate at 40%
capacity for increased efficiency under
typical (partial load) heating and
cooling conditions. The three GSHPs
are connected to a shared ground loop
consisting of two 76m (250 foot) deep
closed-loop wells located under
le Soleil’s front yard. A 5kW back-up
electric heating coil in the forced air
ducting in each apartment helps ensure
occupant comfort under extreme
heating demands or in the case of a
GSHP malfunction.

The combination of Le Soleil’s highly
insulated building envelope and the
heat from passive solar gains,
occupants, appliances and lighting may
result in overheating of the apartments
from time to time. To help limit the
amount of air-conditioning required to
maintain comfortable conditions, the
forced air systems in each apartment
can operate in a “free-cooling” mode
that draws in outdoor air (by-passing
the HRVs) to cool the apartments when
outdoor temperatures are sufficiently
cool (7°C - 21°C, 45°F - 70°F) and air-
conditioning is required.

A variety of strategies were employed
to further reduce le Soleil’s day-to-day
energy consumption. Highly energy-
efficient appliances are provided with
the apartments, along with a complete
compact fluorescent lighting package.

To further conserve electricity, a master
switch by the front door of the
apartment turns off all interior lighting
and a selection of electric outlets.

Devices, such as electronic equipment
that continues to consume electricity
when not in use, can be plugged into
these outlets to reduce their small,
but otherwise continuous electricity
consumption. In addition, motion
sensors and timers control lights in the
common areas and stairwells, and the
outdoor lighting.

Renewable Energy
Production

The site orientation of le Soleil and
the future construction of a four storey
building immediately to the south of
the triplex decrease the passive solar
potential for the building. Le Soleil’s
windows face southeast, southwest or
northeast, thereby decreasing the
potential passive solar gain in
comparison to that which could be
realized if windows were south facing.
However, even with these sub-optimal
conditions, passive solar gain is
predicted to contribute at least 35%
of the building’s space heating needs.

The 13.8 kW solar PV array is made
up of sixty panels. These are mounted
on an elevated roof-top steel structure
that also provides shade to a portion of
the accessible roof-top terrace. The PV
array is predicted to generate 15,100 kWh
annually. PV production is concentrated
mostly in summer, while demand is
distributed over the entire year.

To respond to this, a net-metering
arrangement is employed that allows
le Soleil to send surplus energy to the
Hydro Quebec grid when available
(e.g. during the summer daylight hours),
and to consume energy from the grid
when needed. At the end of the year,
the balance between total consumption
and production is tallied to determine
if the net-zero energy goal is met.

Up to 80% of le Soleil’s domestic hot
water needs are expected to be met by
a rooftop array of six 1.2 m x 2.4 m
(4’ x 8’) flat plate solar panels. In the
summer months solar hot water
production is expected to exceed
demand and any surplus may
eventually be sold to the adjacent
building, potentially allowing le Soleil
to become a net producer of energy.

Energy efficiency is further enhanced by
recovering energy that would otherwise
be lost. The HRVs in each apartment
recover heat energy from the outgoing
exhaust air and use it to heat the
incoming fresh air to save on heating
costs. Drain water heat recovery devices capture heat from the shower drains that would otherwise be lost to the sewer system and transfer this heat to the incoming cold water destined for the hot water tank, thereby reducing the domestic hot water energy consumption. When required, further heating of water is provided by the GSHP desuperheaters.

Resource Conservation

Le Soleil was designed to minimize natural resources consumed during construction, and over the building’s lifetime. An important factor is the use of sustainably manufactured and recycled materials. For example, the building is framed with Forest Stewardship Council3 (FSC) certified wood. The hardwood flooring, which is from a local mill, is also FSC certified. Locally-manufactured gypsum board contains 95% recycled materials.

Efficient use of materials includes engineered, open-web wood joists for the floor structure as well as strategic design practices such as adjusting building dimensions (such a window opening) to help reduce the amount of natural resources required for the project and on-site lumber cuts and resulting material waste.

During construction, site erosion was controlled by creating sedimentation basins to reduce rain water runoff velocities and to retain ground water emanating from the GSHP wells during drilling. The builder, who is experienced in waste reduction, also had solid waste collected, sorted and recycled in order to meet or exceed Recyc-Québec’s4 minimum solid waste diversion target of 60%.

Le Soleil’s apartments are designed with minimal load-bearing partitions, a strategy that maximizes the space’s flexibility while meeting people’s evolving needs over their building’s lifetime. The floorplans can be left as an open space or easily modified to create one or two bedrooms, making the apartments well suited for couples and small families, as well as home-based professionals. This flexibility helps to limit the amount of renovation work and materials required to adapt the units as needed over time.

Reduced Environmental Impact

The project’s urban setting offers its residents convenient access to a range of services and benefits that allow them to significantly reduce their transportation-related environmental footprint. Its close proximity to the metro, major bus routes, bike paths and a full service shopping concourse means that it is easy and practical to live without a car. For occasional longer trips, membership in a car-share program (with several nearby vehicles available for use) is included in the condominium fees.

To reduce municipal water consumption and waste water production, the apartments are fitted with low-flow plumbing fixtures and appliances. In addition, rainwater from the roof runoff is collected in a basement cistern, filtered and distributed through an independent plumbing network to non-potable end uses such as toilets. If the cistern is emptied, the network automatically transfers to the municipal water system as backup. This feature alone is estimated to reduce the annual consumption of potable toilet water by 75%.

3 For further information on the Canadian Forest Stewardship Council see http://www.fsccanada.org/default.htm
4 For further information on Recyc-Québec see http://www.recyc-quebec.gouv.qc.ca/client/fr/accueil.asp
Figure 3—Floor plan of an Abondance Montréal: le Soleil home

Figure 4—Alternate floor plan of an Abondance Montréal: le Soleil home
Figure 5—Rendering of Abondance Montréal: le Soleil, showing space and water heating technologies.

- Photovoltaic panels
- Stairway enclosure to roof top terrace
- South west passive solar heating
- Solar thermal panels for domestic hot water
- Main ventilation shaft for both free cooling and normal mechanical ventilation modes
- Living wall in front of ventilation air intake
- Geothermal heating and cooling 3 separate heat pumps
- Excess hot water (in summer) may be sold to neighbouring building

To Hydro Quebec

From Hydro Quebec
Technical Summary: Abondance Montréal: le Soleil, Montreal, Quebec

Building Description

Type: New condominium - 3 units, open concept
Floor space of each apartment: 94.4 m² 1016 ft²
Solar Orientation: northeast / southwest
Building footprint: 109.2 m² 1,175 ft²
Heated volume of each apartment: 211 m³ 7,452 ft³
Heated floor area of each apartment: 79.3 m² 854 ft²
Ceiling area of each apartment: 79.3 m² 854 ft²
External wall area of each apartment: 346.2 m² 3,726 ft²
Window area total in each apartment: 19.44 m² 209.3 ft²
Southwest: 9.38 m² 101 ft²
Northeast: 3.19 m² 34.3 ft²
Ratio of south glazing area to floor area: n/a

Thermal Characteristics

- **Roof:** RSI 12.3 R-70
- **Walls:** First, 2nd and 3rd floor RSI 7.92 R-45
- **Basement below grade:** RSI 6.34 R-36
- **Windows:** RSI 1.23 R-7.0
- **Basement floor:** RSI 2.64 R-15
- **Measured Airtightness Level:** 0.4 ACH @ 50 Pa

Site Characteristics

- **Location:** Montreal (Verdun) Quebec
- **Site type:** Urban, new development
- **Site area:** 255.5 m² 2,750 ft²
- **Elevation:** 29.2 m 96 ft.
- **Latitude:** 45°28'N
- **Longitude:** 73°45' W

Climate

- **Average daily horizontal solar irradiation:** 3.5 kWh/m²
- **Average daily vertical solar irradiation:** 2.8 kWh/m²
- **Average annual precipitation:** 967 mm 38 in.
- **Average annual wind speed:** 14.3 km/h 9 mph
- **Average outdoor temperatures:**
 - January: -10.4 °C 13.3 °F
 - April: 5.7 °C 42.3 °F
 - July: 20.9 °C 69.6 °F
 - October: 7.9 °C 46.2 °F
- **Building design temperatures:**
 - January: -24°C -11.2 °F
 - July: 26.7°C 80.1 °F
- **Heating Degree Days (base 18°C [64°F]):** 4,575 [8,234]
- **Cooling Degree Days (base 18°C [64°F]):** 235 [423]

Predicted Annual Energy Consumption

- **Space heating:** 6.6 kWh/m²
- **Domestic water heating:** 26.1 kWh/m²
- **Appliances/ lighting:** 48.8 kWh/m²
- **Mechanical ventilation:** 12.5 kWh/m²
- **Space cooling:** 5.4 kWh/m²

Total predicted consumption: 99.5 kWh/m²

Note: All values are based on heated floor area. The space heating value does not include the contribution from passive solar gains and internal gains (see Space Heating Information, below).

Predicted Annual On-site Renewable Energy Production

- **Solar (photovoltaic) electricity:** 60.6 kWh/m²
- **Active solar domestic water heating:** 21.7 kWh/m²

Total predicted production: 82.3 kWh/m²

Note: All values are based on heated floor area.

EnerGuide for Houses (EGH*) Rating

- **99.3**

Space Heating Information

Space heating requirements for each of the le Soleil apartments will be met as follows (predicted values):

- **Passive solar gain:** 35.6%
- **Internal gains:** 39.1%
- **Three-ton ground source heat pump (COP 3.1):** 25.3%

Domestic Hot Water Information

Domestic hot water requirements for the le Soleil apartments will be met as follows (predicted values):

- **Active solar thermal heating system:** 51%
- **Three-ton ground source heat pump desuperheater:** 7.1%
- **Drainwater heat recovery:** 31.8%
- **Electric DHW tank:** 10.1%

Ventilation

- **60 cfm heat recovery ventilator (HRV) with 2 ECM motors** in each apartment. Maximum efficiency 88% at 0 °C (32 °F). 25 L/s at 125 PA.

Water Consumption (estimated 4 person consumption)

- **Potable water:** Not Estimated
- **Rainwater harvesting:** 36.5 L/day 8 U.K gal/day
- **Drainwater:** 13,333 L/yr 2,935 U.K. gal/yr

1. All size, area, energy use, and system capacity are the average values of the three units
2. Natural Resources Canada’s EnerGuide For Houses (EGH*) Rating is a standard measure of a home’s energy performance, and can range from 0 to 100. The rating is based, in part, on the assumed energy consumption of appliances, assumed hot water draws, and other electricity usages in conventional homes. The EGH* Rating allows reductions in electricity and hot water loads in EQuilibrium™ homes, thereby more accurately reflecting the home’s potential energy performance.
3. Internal gains include heat from occupants, lights, appliances, mechanical systems, and consumer electronic items.
4. Building design temperatures are based on historic temperature data for a particular area and are used when designing a building and its heating and cooling systems for that area.

8 Canada Mortgage and Housing Corporation
Affordability

The compact floor plans reduce the costs to purchase, furnish and maintain le Soleil’s apartments. Proximity to essential amenities allows residents to access local goods services, and to live comfortably without the expenses of car ownership.

This EQuilibrium™ Housing Project converts what was a parking lot into three homes. It increases urban density, transforming a corner of the neighbourhood into an attractive building that contributes to the urban fabric while minimizing its impact on the environment.

Project Team

Primary contact: Christopher Sweetnam - Holmes, Principal EcoCité Developments (Montreal, QC)
www.ecocite.ca
cholmes@ecocite.ca

Builder: Robert Deschamps
Les Constructions Sodero Inc.
www.constructionsodero.com
info@constructionsodero.com

Architects: Vouli Mamfredis and Robert Miners
Studio MMA
www.studiomma.ca
v.mamfredis@studiomma.ca

Engineer: Roland Charneux
Pageau Morel et Associés
www.pageaumorel.com

For more information about this project and other EQuilibrium™ Housing projects, visit the CMHC website at www.cmhc.ca
EQuilibrium™ Housing

What is EQuilibrium™ Housing?

EQuilibrium™ Housing is a national sustainable housing demonstration initiative, created and led by Canada Mortgage and Housing Corporation (CMHC) that brings the private and public sectors together to develop homes, and eventually communities, that address occupant health and comfort, energy efficiency, renewable energy production, resource conservation, reduced environmental impact and affordability.

CMHC’s EQuilibrium™ housing initiative offers builders and developers across the country a powerful new approach to establish a reputation for building premium quality sustainable homes that will meet the needs of Canadians now and well into the future.

EQuilibrium™ housing combines a wide range of technologies, strategies, products and techniques designed to reduce a home’s environmental impact to an absolute minimum. At the same time, EQuilibrium™ housing also features commercially available, on-site renewable energy systems to provide clean energy to help reduce annual consumption and costs.

The ultimate goal is a highly energy-efficient, low-environmental-impact house that provides healthy indoor living for its occupants and produces as much energy as it consumes on a yearly basis. As part of the initiative, all EQuilibrium™ projects will be open to the public for a minimum time period of six months and then monitored for performance with occupants for at least one year.

For more information on this project and on the CMHC EQuilibrium™ Sustainable Housing Demonstration Initiative, visit www.cmhc.ca
Thermography
When the blower door test was performed, December 2008

Church not insulated Building beside
Thermal resistance equivalent to the windows of the building Le Soleil

Le Soleil building – Heatlok Soya outside